The Influence of Grain Boundary Diffusion on the Electro-Optical Properties of CdTe/CdS Solar Cells

نویسندگان

  • D. H. Levi
  • R. K. Ahrenkiel
چکیده

We report on a study of the effects of diffusion of metals through polycyrstalline CdTe thin films. The metals Ni, Pd, Cu, Cr, and Te are deposited onto the back surface of 10-μm thick CdTe/CdS device structures using room-temperature evaporation. We found that four out of the five metals produce significant changes in the photoluminescence (PL) of the near-junction CdTe material. These changes are explained in terms of spatial variations of the photoexcited carrier distribution and spatial variations in the sulfur composition of the CdTeS alloy material near the CdTeS interface. The changes in carrier distribution appear to be associated with band bending and electric fields induced by diffusion of the metals to the CdTe/CdS interface. In addition to PL measurements, we have also utilized a technique for detaching the CdTe film from the CdS/TCO/glass superstrate to directly access the front surface of the CdTe absorber layer. We have used secondary ion mass spectroscopy to measure the metal diffusion profiles from this interface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Change the Thickness on CdS/CdTe Tandem Multi-Junction Solar Cells Efficiency

 Researchers in the field of simulation have been mainly interested in the question of how to increase the efficiency of solar cells. Therefore this study aimed to investigate CdS/CdTe solar cells by applying AMPS-1D software. The impact of semiconductor layers thickness on the output parameters of the CdS/CdTe solar cell is being analyzed and studied carefully, for example, fill factor, effici...

متن کامل

Investigation of Physical Properties of e-Beam Evaporated CdTe Thin Films for Photovoltaic Application

CdTe thin films with 2.8 µm thickness were deposited by electron beam evaporation method. X-ray diffraction, scanning electron microscopy, UV-Vis-NIR spectroscopy and atomic force microscopy (AFM) were used to characterize the films. The results of AFM analysis revealed that the CdTe films have uniform surface. CdTe thin films were heat-treated by SnCl2 solution. Structural analysis using XRD s...

متن کامل

Thermal Annealing Influence over Optical Properties of Thermally Evaporated SnS/CdS Bilayer Thin Films

Thin films of tin sulfide/cadmium sulfide (SnS/CdS) were prepared bythermal evaporation method at room temperature on a glass substrate and then annealedat different temperature with the aim of optimizing the optical properties of the materialfor use in photovoltaic solar cell devices. The effect of annealing on optical propertiesof SnS/CdS film was studied in the temper...

متن کامل

Influence of CdS/CdTe Interface Properties on the Device Properties

In this paper, we have focused on the formation and the role of CdS/CdTe interface on CdTe solar cells. The devices were made using chemical bath deposited (CBD) CdS on SnO2/glass substrates and the CdTe was deposited by close spaced sublimation (CSS). CdTe was treated with CdCl2 : known to be a key processing parameter. Compositional analysis showed considerable interdiffusion of Te and S as w...

متن کامل

Microstructure Analysis of Cdte/cds Thin-film Solar Cells for Optimization of Devices Fabricated at Low Temperature with Pulsed Laser Deposition

Low temperature fabrication of CdTe (1.25 μm)/CdS (120 nm) thinfilm solar cells was explored using in situ pulsed laser deposition (PLD) in order to control the CdTe grain morphology, crystallinity, and CdS/CdTe interface, which have proven to be crucial in CdTe/CdS solar cell performance. A comparative study was carried out on solar cells fabricated using PLD with the CdTe layer either grown d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998